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Abstract: A low FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides,
and polyols) diet allows most irritable bowel syndrome (IBS) patients to manage their gastrointestinal
symptoms by avoiding FODMAP-containing foods, such as onions, pulses, and products made
from wheat or rye. The downside of a low FODMAP diet is the reduced intake of dietary fiber.
Applying sourdoughs—with specific FODMAP-targeting metabolic properties—to wholegrain bread
making can help to remarkably reduce the content of FODMAPs in bread without affecting the
content of the slowly fermented and well-tolerated dietary fiber. In this review, we outline the
metabolism of FODMAPs in conventional sourdoughs and outline concepts related to fructan and
mannitol metabolism that allow development of low FODMAP sourdough bread. We also summarize
clinical studies where low FODMAP but high fiber, rye sourdough bread was tested for its effects
on gut fermentation and gastrointestinal symptoms with very promising results. The sourdough
bread-making process offers a means to develop natural and fiber-rich low FODMAP bakery products
for IBS patients and thereby help them to increase their dietary fiber intake.

Keywords: sourdough; FODMAP; fructan; mannitol; lactobacilli; irritable bowel syndrome (IBS);
non-celiac wheat intolerance

1. Introduction

Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) have
beneficial and adverse health effects [1]. Oligosaccharides that are not hydrolyzed and absorbed
in the small intestine are rapidly fermented by intestinal microbiota in the terminal ileum and the
proximal colon [2,3]. Diverse FODMAPs that are fermented by intestinal microbiota consistently
cause adverse symptoms when a dose of about 0.3 g/kg body weight, corresponding to about
15 g/day, is exceeded [4,5]. Adverse symptoms include osmotic diarrhea, intestinal distension,
and bloating [5,6]. The extent of the adverse symptoms decreases with the degree of polymerization
because of the reduced osmotic load of oligosaccharides in the small intestine, and the reduced rate
of fermentation [6]. Adverse effects are not described for non-digestible polysaccharides, which are
fermented at a much lower rate [7]. Microbiota in the terminal ileum include proteobacteria and
lactic acid bacteria as the dominant representatives; ileal microbiota effectively ferment mono- and
disaccharides but typically lack extracellular enzymes for hydrolysis of higher oligosaccharides and
polysaccharides [6]. The sensitivity of individuals to adverse symptoms caused by FODMAPs is
highly variable; adverse symptoms are often linked to irritable bowel syndrome (IBS). The sensitivity
to gas pressure and pain varies highly among individuals; moreover, intestinal microbiota adapt
toward the fermentation of specific oligosaccharides; this adaptation reduces or eliminates adverse
symptoms [8]. Many FODMAPs are conditionally digestible depending on the genetic status of the
host. About 35% of humans are lactase-persistent and digest lactose while lactose is a non-digestible
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FODMAP in the remainder of the population [9]. A substantial proportion of humans are fructose
intolerant; the proportion of fructose intolerant individuals among patients with IBS was reported to
be over 60% [10,11]. Fructose absorption is highly dependent on the presence of equimolar amounts of
glucose as uptake from the small intestine uses the same transport channels [10]. A rare variation in
the sucrose-isomaltase gene reduces the digestibility of sucrose, including sucrose in the FODMAPs;
this genetic variant also predisposes for IBS [12].

Health beneficial or prebiotic effects of oligosaccharides relate to the bacterial conversion of
oligosaccharides to short chain fatty acids [1,13]. These short chain fatty acids increase the energy
harvest from carbohydrates that escape small intestinal hydrolysis and absorption, improve intestinal
barrier properties and resistance to enteric infections, and exert systemic effects related to inflammation,
cognitive functions, and behavior through specific recognition with G-protein coupled receptors
(for reviews, see [1,7,13]). Of note, oligomeric fructans, for which health beneficial prebiotic effects
were most consistently demonstrated [13], appear also of particular concern for adverse effects in
IBS [6]. Adverse and beneficial effects of FODMAPs are thus interconnected and partially related to
the same mechanisms, bacterial fermentation. Consequently, a reduction of adverse symptoms in IBS
by a low FODMAP diet also increased the luminal pH and reduced the abundance of bifidobacteria
and butyrate-producing colonic bacteria [14,15]. While the term FODMAPs indiscriminately includes
all oligosaccharides, different compounds were reported to have divergent effects. Supplementation of
a low FODMAP diet with β-galacto-oligosaccharides was reported to improve IBS symptoms relative
to a low FODMAP diet [16]. In other words, replacement of FODMAPs with different categories of
FODMAPs may improve symptoms of IBS without the adverse consequences of a low fiber diet [1].

Wheat and rye are major contributors to the dietary intake of low molecular weight fructans [17]
but whole grain products also are major contributors to the intake of dietary fiber [7]. Fermentation
processes during baking may allow conversion or degradation of FODMAPs without reducing the
overall dietary fiber content of bread [18]. This review aims to summarize current knowledge on the
use of conventional and sourdough baking in the production of low FODMAP bread.

2. FODMAPs as Contributors to Non-Celiac Wheat Sensitivity?

Non-celiac wheat sensitivity refers to syndromes where components of wheat cause intestinal
symptoms. Triggers and mechanisms of the syndrome are poorly described; non-celiac wheat
sensitivity is often self-diagnosed or assessed after exclusion of celiac disease and wheat allergy [19,20].
Non-celiac wheat sensitivity overlaps significantly with IBS [20]. Non-celiac wheat sensitivity has
also been described as non-gluten wheat sensitivity since gluten apparently is not a major trigger
in these symptoms [21]. While a contribution of FODMAPs to symptoms in IBS is increasingly
supported by clinical trials, their role in non-celiac wheat sensitivity is not as well documented.
FODMAPs and amylase trypsin inhibitors (ATIs) were suggested as likely non-gluten triggers of these
symptoms [19,20]. It is likely that Triticeae cereals other than wheat, such as rye and barley, are also
potential triggers of wheat sensitivity because they also contain fructans and ATIs.

3. FODMAPs in Cereals and FODMAP Metabolism in Conventional Sourdoughs

Resting grains of wheat and rye contain only low levels of monosaccharides; the major
oligosaccharides are sucrose, raffinose, and fructans (Table 1). During sourdough fermentation,
amylase and glucoamylase activities of wheat and rye flour release maltose and glucose, respectively,
from damaged starch [18]. The fructans of cereal grains are graminan-type fructans, which are
oligosaccharides built of mixed-linkage fructose units [22]. Fructans in wheat and rye are concentrated
in the outer layers of the grain and have an average degree of polymerization (DP) of 5–6; 1-kestose and
nystose account for only a minor proportion of the overall fructans (Table 1) [23]. Additional non-starch
polysaccharides include arabinoxylans and β-glucans as the major components, polysaccharides
composed of mannose, galactose, and galacturonic acid, and trace amounts of pectin (Table 1).
In addition to polysaccharides and FODMAPs that are present in the grain, polysaccharides,
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oligosaccharides, and polyols can be produced by bacterial activity during sourdough fermentation.
An overview of the conversion and production of FODMAPs in sourdough fermentation is provided
in Figure 1.

During bread making, the fructans undergo partial degradation due to invertase activity present
in yeast. The remaining fructan has a lower DP than the native fructan of flour. Low molecular weight
fructans may be under-estimated when analyzing fructan in dough; in addition, they are fermented
more rapidly than fructans with a higher molecular weight. The fate of fructans is valid for sourdough
fermentation, i.e., grain fructans degrade to some extent but in the case of sourdough, the released
fructose is also partially converted to mannitol by sourdough lactobacilli. Mannitol is a polyol that is
rapidly fermented by gut microbiota. Thus, for accurate FODMAP quantification, mannitol levels in
sourdough breads should also be determined. In the following sections, we outline the carbohydrate
metabolism in sourdoughs. This is relevant to understand when the focus is in changes of FODMAPs
in sourdough bread making.

Table 1. Content of oligosaccharides and non-starch polysaccharides (%) in wheat and rye grains.

Saccharide Wheat Rye

Arabinoxylans 6–7 7–12
β-Glucans including lignified cellulose 0.3–3 2–3

Pectin trace trace
Mannans, galactans, and galacturonans 1–1.5 n.d.

Fructans 1–2 4.3–5
1-Kestose 0.1 0.3
Nystose 0.03 0.1
Sucrose 0.6–1.0 1.2–1.8
Maltose trace trace

Raffinose 0.2–0.7 0.1–0.7
Stachyose trace trace

Compiled with information from [17,23–31]; n.d., not determined.

In straight dough processes, the dough is fermented with baker’s yeast as the sole fermentation
organism; the addition of high cell counts of S. cerevisiae, 1–2% biomass corresponding to about
108 cfu/g, achieves leavening after a fermentation time of 2 h or less. In sourdough baking, lactic acid
bacteria are used as the second group of organisms; moreover, part of the flour is fermented for an
extended period of time. The inclusion of lactic acid bacteria extends the metabolic capacity of the
fermentation microbiota; the extended fermentation time strongly enhances the contribution of flour
enzymes to the conversion and degradation of dough components [18]. Type I sourdoughs are typically
fermented between 15 and 30 ◦C and they have traditionally been used as the sole leavening agent
in bread making. To ensure a sufficient metabolic activity and leavening capacity, type I sourdoughs
are propagated through one to three fermentation steps prior to mixing the bread dough [27,32].
Fermentation procedures that use sourdough as the sole leavening agent typically result in ~10% of
the flour being fermented for >12 h, 20–30% fermented for >6 h, and all of the flour fermented for
2–3 h, i.e., the time required for dough rest and proofing [33,34]. Fermentation organisms in type I
sourdoughs generally include Lactobacillus sanfranciscensis and Kazachstania humilis (syn. Candida milleri)
and S. cerevisiae or S. exiguus. Lactobacilli of the L. brevis, L. plantarum, and L. reuteri groups are also
represented in type I sourdoughs [32,35]. Industrial bread production generally includes baker’s
yeast as the leavening agent; sourdough fermentations in industrial baking (type I or II sourdoughs)
aim at dough acidification to improve the baking quality of rye flour, at supporting the leavening
capacity of baker’s yeast, and as baking improver [32–34]. Fermentation conditions depend on the
technological aim of the fermentation and are often specific for a specific production site; typically,
5–20% of the flour is fermented for >12 h while the remainder of the flour is fermented for ~2 h,
corresponding to dough rest, shaping, and proofing [33,34]. Type II sourdough fermentation takes
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place at around 40 ◦C and the microbiota typically comprise organisms of the L. delbrueckii group
(e.g., L. amylovorans and L. johnsonii) and organisms of the L. reuteri group (e.g., L. reuteri, L. pontis,
and L. panis) [32,36]. Sourdough microbiota are metabolically active if the sourdough is fermented
at the bakery but inactivated if the sourdough is stabilized by drying or pasteurization prior to use
in baking [34].

Sucrose is metabolized rapidly by invertase activity of S. cerevisiae. Yeast invertase is an
extracellular or cell wall-bound enzyme and is secreted in excess of the yeast’s capacity to ferment
the hydrolysis products [37]. Sucrose metabolism in lactic acid bacteria is mediated by sucrose
phosphorylase or sucrose-1-phosphate hydrolase [38]. Sucrose metabolism and the metabolism
of other oligosaccharides in homofermentative lactic acid bacteria is repressed by glucose [39];
in contrast, sucrose conversion in heterofermentative lactic acid bacteria is induced by the substrate
but not repressed by glucose [40,41]. Fructose is utilized as a carbon source by homofermentative
lactic acid bacteria but used as an electron acceptor for the regeneration of reduced cofactors by
most heterofermentative lactobacilli [41,42]. Sourdough lactic acid bacteria also harbor extracellular
glucansucrases or fructansucrases, which convert sucrose to indigestible poly- and oligosaccharides.
These enzymes are frequently present in Leuconostoc spp., Weissella spp., and species of the L. reuteri
and L. delbrueckii groups but are also present in other lactobacilli including L. sanfranciscensis [43,44].
Glucansucrases convert sucrose to polymeric glucans, isomalto-oligosaccharides, and fructose;
fructansucrases catalyze the conversion to levan or inulin, fructo-oligosaccharides, and glucose [44].
Sucrose conversion by glucansucrases and fructansucrases accumulated isomalto-oligosaccharides and
fructo-oligosaccharides, respectively, in wheat and sorghum sourdoughs; however, accumulation
of oligosaccharides to relevant concentrations is observed only when sucrose is added to the
sourdough [45,46]. Glucansucrases and the hydrolase activity of fructansucrases generally also release
fructose, which is converted to the polyol mannitol by heterofermentative lactic acid bacteria [41,43].
In traditional sourdough fermentations, mannitol accumulates to 10–20 mmol/kg in wheat and
50 mmol/kg in rye, corresponding to 0.2–0.4% and 0.9%, respectively; the mannitol concentration is
increased in direct proportion to the sucrose addition to sourdoughs [47]. Weissella spp. are exceptional
because the majority of strains do not produce mannitol from fructose [45].

Lactic acid bacteria metabolize raffinose by sequential activity of extracellular levansucrase
to convert raffinose to melibiose and fructose or fructan, followed by melibiose transport and
intracellular hydrolysis by α-galactosidase. An alternative pathway involves raffinose transport
and sequential hydrolysis by intracellular α-galactosidase to convert raffinose to sucrose and
galactose and sucrose phosphorylase [48]. Metabolism by extracellular levansucrase with intracellular
α-galactosidase is faster than the alternate pathway using two intracellular enzymes, presumably
because the disaccharide melibiose is transported faster than raffinose [48]. Raffinose metabolism in
heterofermentative lactobacilli is not subject to carbon catabolite repression [49] and the relatively high
concentrations of raffinose and raffinose level oligosaccharides in pulse flours are rapidly degraded
during fermentation [48]. Type I sourdough microbiota and most strains of S. cerevisiae are raffinose
negative. Nevertheless, levansucrase from L. sanfranciscensis and/or yeast invertase converts raffinose
to fructose and melibiose [43,50].

The content of fructans is reduced in straight dough processing to 1–1.5% fructans in wheat bread
and about 3% in rye bread [51]. Fructans are not degraded in simulated sourdoughs without microbial
activity but invertase activity of S. cerevisiae and Kazachstania humilis results in partial hydrolysis of
flour fructans [52,53]. In a straight dough process, the rate of fructan hydrolysis decreases in the order
trisaccharides > tetrasaccharides > pentasaccharides and only a small proportion of higher fructans are
degraded [54]. Hydrolysis of fructans is mediated by yeast. However, dimerization of the enzyme
reduces the activity towards kestose and nystose and sterically prevents access of oligosaccharides
with a DP of more than four to the catalytic site [55]. Metabolism of fructans in lactobacilli is mediated
by oligosaccharide transport through the ATP-Bbinding-Cassette transporter MsmEFGK or the
phosphotransferase (PTS) system PTS1Bca, followed by hydrolysis through intracellular fructosidases
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or phospho-fructosidases, respectively [38]. Oligosaccharide transport by MsmEFGK and PTS1BCA
is limited to fructans with a DP of four or less [56,57]. Metabolic enzymes for fructo-oligosaccharide
(FOS) catabolism are frequent in homofermentative lactobacilli where FOS degradation is repressed by
glucose [58] but are very infrequently found in heterofermentative lactobacilli [38,43,49]. Intracellular
metabolism of FOS by lactobacilli thus does not contribute to the degradation of fructans in wheat or
rye sourdoughs.

In summary, conventional dough fermentations, including sourdough fermentations, result in
decreased levels of FODMAPs but may generate FODMAPs from the digestible carbohydrates sucrose
and fructose (Figure 1). Low FODMAP baking thus necessitates dedicated approaches, particularly
involving fructan- and mannitol-degrading organisms.
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Figure 1. Conversion and generation of fermentable oligosaccharides, disaccharides, monosaccharides,
and polyols (FODMAPs) in wheat and rye sourdoughs. Sucrose hydrolysis by yeast invertase
or fructosidases of lactic acid bacteria [a]. Oligosaccharide formation by glucansucrases to form
isomalto-oligosaccharides, or by fructansucrases to form kestose, nystose, and erlose from sucrose [b].
Kestose and nystose degradation by yeast invertase or by intracellular (phospho)-fructosidases of
lactic acid bacteria [c]. Raffinose conversion by yeast invertase and levansucrase from lactic acid
bacteria [d]. Fructose conversion by mannitol-dehydrogenase from heterofermentative lactic acid
bacteria [e]. Starch conversion to maltose and glucose by flour amylases and gluco-amylase [f,g].
Exogenous xylanases are used in baking to increase the amount of soluble pentosane (arabinoxylan,
AX) to improve bread properties, which can produce low DP arabinoxylan oligosaccharides (AXOS)
along soluble high-DP arabinoxylan fragments [h].

4. Concepts for Low FODMAP Sourdough Baking

Degradation of fructans with a DP of more than four requires extracellular fructanases.
Baker’s yeast S. cerevisiae does not express extracellular fructanase. However, Kluyveromyces marxianus
was suggested as an alternative leavening agent with extracellular fructanase activity [53,59].
K. marxianus is maltose negative and most strains do not provide sufficient CO2 production for
dough leavening; the use of K. marxianus in low FODMAP baking thus requires co-culture with
S. cerevisiae [53] or selection of K. marxianus strains with sufficient leavening power and addition of
amyloglucosidase to provide glucose for K. marxianus metabolism [53,59]. Dough fermentation with
K. marxianus alone or in co-culture with S. cerevisiae allowed production of experimental breads with
a low fructan content and a volume and sensory properties matching those of experimental breads
produced with baker’s yeast [53,59].
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Extracellular glycosyl hydrolases are exceptional in lactobacilli [38]; accordingly, only a few
strains with extracellular fructanase activity have been characterized (Figure 2). The extracellular
GH32 β-fructanase FosE was characterized in L. paracasei [60]. FosE is an extracellular enzyme that
is induced by fructose, sucrose, or inulin but repressed by glucose [60]. BLAST analysis frequently
identified homologues of this enzyme in other strains of the L. casei group and in few strains of the
L. salivarius group (Figure 2 and data not shown). The β-fructanase FruA of Streptococcus mutans is
extracellular with an LPXTG cell wall anchor; the enzyme has less than 40% amino acid identity to FosE
([61] Figure 2). FruA of S. mutans plays a critical role in fructan degradation and the virulence of oral
streptococci; BLAST analysis frequently identified homologues of FruA in other streptococci (Figure 2).
Only five of the more than 1500 genome sequences assigned to the genus Lactobacillus harbors FruA
homologues; this low frequency suggests that this β-fructanase is not necessary for the lifestyle of
lactobacilli but only infrequently acquired by lateral gene transfer. Two of the species with FruA
activity, L. amylovorus and L. crispatus, match species that are typically found in type II sourdoughs.
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Figure 2. Molecular phylogenetic analysis of extracellular fructanases in lactic acid bacteria by
the Maximum Likelihood method. The evolutionary history was inferred by using the Maximum
Likelihood method; the tree is drawn to scale with branch lengths measured in the number of
substitutions per site. Evolutionary analyses were conducted in MEGA7. Sequences were retrieved
by NCBI Blast using the fructanase of L. crispatus [62] and the inulinase of L. paracasei [60] as query
sequence. Sequences from lactic acid bacteria (Lactobacillales) with a more than 80% coverage and more
than 50% amino acid identity were retrieved and aligned by ClustalW in MEGA 7.0. A levanase of
Bacillus subtilis was included for comparison. Only one representative sequence for each bacterial
species was chosen; sequences of 15 Streptococcus spp. which were all similar to sequences of other
streptococci were omitted from the tree. The two Lactobacillus enzymes that were characterized
biochemically are printed in bold.

Type I and type II sourdough microbiota generally include heterofermentative lactobacilli
that convert fructose to mannitol. Degradation of mannitol in low FODMAP baking therefore
requires mannitol-fermenting lactobacilli. Mannitol metabolism in lactobacilli is mediated by a
mannitol-specific PTS system, followed by conversion by mannitol-1-phosphate-dehydrogenase
to fructose-1-phospyate [63]. Enzymes for mannitol conversion are present in homofermentative
lactobacilli of the L. delbrueckii, L. casei, L. plantarum and L. salivarius groups, likely representing trophic
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relationships with heterofermentative lactobacilli. In analogy to other PTS systems in lactobacilli,
mannitol metabolism in homofermentative lactobacilli is repressed by glucose [39,41,58].

Glucose and maltose levels in wheat and rye sourdoughs and consequently carbon catabolite
repression in homofermentative lactobacilli and yeasts [38,41] are determined by the level of damaged
starch and the β-amylase and amyloglucosidase activity in flour (Figure 1; [18,64]). If enzyme activity
and the level of damaged starch in flour are low, sucrose, raffinose, and fructans become the most
readily available carbohydrates [64]. The composition of the microbiota in rye sourdoughs that
are low in damaged starch match the composition in other type II sourdoughs with organisms of
the L. delbrueckii group including L. crispatus, L. amylovorus, and L. ultuensis, and organisms of the
L. reuteri group including L. frumentii and L. pontis as the dominant members [32,35,65]. The restricted
availability of maltose and glucose, however, selects for strains expressing an exceptional fructanase
(Figure 2, [62,65]). The prevailing enzyme activity is an extracellular exofructanase (Figure 2),
which exhibits more than 80% of the maximum activity in the pH range of 4–6 and the temperature
range of 30–60 ◦C [62]. Fructan hydrolysis in sourdough releases fructose that is partially converted to
mannitol by L. reuteri group organisms (Figure 3). However, the restriction of carbohydrate sources
also allows for mannitol conversion after fructans are completely consumed (Figure 3) and results in
a virtually zero FODMAP sourdough. The use of this zero FODMAP sourdough in low FODMAP
rye bread making involves the addition of unfermented rye flour, which is fermented for only a
short time [65]. Nevertheless, the choice of appropriate raw materials and the use of FruA-positive
and mannitol-fermenting lactobacilli allows fructan degradation in rye and rye sourdoughs for the
production of bread with a low content of fructans and mannitol but a comparable fiber content when
compared to regular bread [66–68].
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5. Proof of Concept from Clinical Trials with Low FODMAP Rye Bread

Two clinical trials done with IBS patients verified that low FODMAP rye bread made by using
the above described zero FODMAP sourdough influences the gastrointestinal symptoms and the
extent of gas production generated in intestinal fermentation. In the first study in a randomized
double-blind controlled crossover study, it was shown that low FODMAP rye bread caused less
flatulence, less abdominal pain, fewer cramps, and less stomach rumbling than regular rye bread [66].
Of note, the low FODMAP bread retained a high dietary fiber content (10 g/100 g) although the
FODMAP levels were lowered to one third [66]. Including the low FODMAP rye bread thus also
increased the dietary fiber intake to the recommended level in IBS patients, avoiding drawbacks
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of the other low FODMAP diets [15]. A second randomized double-blind controlled crossover
study evaluated the amount of breath hydrogen levels after consuming low FODMAP rye bread
or regular rye bread [68]. Low FODMAP rye bread reduced the generation of hydrogen by colonic
fermentation [68]. This study showed that significant differences between bread types may occur in
their postprandial effects.

6. Conclusions and Future Directions

Conventional sourdough baking reduces and converts FODMAPs in rye and wheat flour; however,
the extent of FODMAP reduction is dependent on the fermentation organisms, the fermentation process,
the grain raw material, and the sourdough dosage to the final bread dough. The production of low
FODMAP bread requires extracellular fructanase activity; sourdough fermentation with lactobacilli
expressing fructanases or the use of fructanase-positive yeasts provide wheat or rye breads with a low
FODMAP content. Low FODMAP bread can help to restrict the intake of FODMAPs but at the same
time increase the intake of slowly fermentable dietary fiber in IBS patients. High fiber/low FODMAP
bread likely prevents the depletion of intestinal bifidobacteria that has been observed on other low
FODMAP diets [14,15] and shows promise in reducing symptoms of IBS.

Anecdotal evidence links sourdough bread to improved tolerance of wheat in individuals with
non-celiac wheat sensitivities [69]. In addition to the degradation of FODMAPs during sourdough
fermentation, reduction and degradation of wheat amylase trypsin inhibitors may improve wheat
tolerance in some individuals [67]. Amylase trypsin inhibitors are suggested to play a role in
intestinal and extra-intestinal symptoms as they induce inflammatory reactions [70]. Amylase trypsin
inhibitors are highly disulfide-bonded proteins; reduction of disulfide bonds reduces bioactivity and
accelerates proteolytic digestion. Sourdough fermentation generates reducing conditions and supports
reduction and hydrolysis of highly disulfide-bonded proteins that resist digestion in unfermented
dough [71]. A pilot trial recruiting IBS patients with non-celiac wheat sensitivity, however, showed
no improvement of intestinal symptoms after consuming sourdough wheat bread compared with
industrial wheat bread [67]. Difficulties in identifying the protective effects of sourdough fermentation
in non-celiac wheat intolerance relate to the poorly identified and likely multifactorial triggers of
(self-diagnosed) non-celiac wheat sensitivity, and the inherent difficulties in blinding consumption of
wheat or wheat sourdough products in clinical trials [67]. Despite the lack of support from clinical
trials, sourdough-derived solutions likely play a significant role when developing healthier bakery
products for people with non-gluten wheat sensitivities.
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